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ABSTRACT
GraphConvolutional Network (GCN) has beenwidely used in graph
learning tasks. However, GCN-based models (GCNs) are inherently
coupled training frameworks repetitively conducting the recursive
neighborhood aggregation, which leads to high computational and
memory overheads when processing large-scale graphs. To tackle
these issues, we present Node2Grids, a cost-efficient uncoupled
training framework that leverages the independent mapped data
for obtaining the embedding. Instead of directly processing the
coupled nodes as GCNs, Node2Grids supports a more efficacious
method in practice, mapping the coupled graph data into the inde-
pendent grid-like data which can be fed into the uncoupled models
as Convolutional Neural Network (CNN). This simple but valid
strategy significantly saves memory and computational resources
while achieving comparable results with the leading GCN-based
models. Specifically, in order to support a general and convenient
mapping approach, Node2Grids selects the most influential neigh-
borhood with central node fusion information to construct the
grid-like data. To further improve the downstream tasks’ efficiency,
a simple CNN-based neural network is employed to capture the
significant information from the mapped grid-like data. Moreover,
the grid-level attention mechanism is implemented, which enables
implicitly specifying the different weights for the extracted grids of
CNN. In addition to the typical transductive and inductive learning
tasks, we also verify our framework on million-scale graphs to
demonstrate the superiority of cost performance against the state-
of-the-art GCN-based approaches. The codes are available on the
GitHub link 1.

∗Corresponding author.
1https://github.com/Ray-inthebox/Node2Grids
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1 INTRODUCTION
Graph Convolutional Network (GCN) [1] has achieved a great suc-
cess in graph learning tasks, including node classification [2, 3], link
prediction [4, 5] and community detection [6, 7]. By applying con-
volutional operations to gather the embeddings of neighbors layer
by layer, GCN-based models (GCNs) significantly gain embedding
for the given nodes. However, GCNs are inherently coupled train-
ing frameworks which repetitively propagate the representations
through interactions between neighbors during training, which
leads to challenges in practice due to the recursive neighborhood
expansion. Specifically, unlike the uncoupled training frameworks
where the calculations can be resolved into uncoupled units (e.g.,
an image for CNN model), GCNs gain embedding for a single node
considering the repetitive aggregation of a great number of coupled
nodes, leading to the inflexibility of the training process.

The original GCN [1] is a full-batch framework, requiring the fea-
tures and adjacency relations of nodes from the full graph Laplacian
available, including the nodes for testing. And the matrix manip-
ulations are operated over the whole graph, which causes high
computational and memory overheads. However, for numerous
cases, the graph is expanding dynamically rather than in a fixed
state, which requires an inductive framework [8] capable of gen-
eralizing well to any augmentation graph by a significant model
utilizing only training set for learning [9].
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Figure 1: An illustration of the architecture for proposed Node2Grids. In this tiny example, there are seven nodes which have
three features. To begin with, the central node is mapped to the Euclidean structured grid with the size of 𝑘 × 1 × 3. Then a
convolutional layer will be further used to extract the information from the grid-like data. In the next step, the proposed model
employs attention filters to learn the weight of each "pixel" (i.e. grid). Finally, the fully-connected layers are applied to gain the
output for node classification.

Instead of taking the full-batch as inputs like original GCN, the
mini-batch strategy [10] achieves better performance in flexibil-
ity when processing large-scale data and inductive learning tasks.
Specifically, mini-batch training updates the learnable parameters
only based on the sampled nodes, which reduces the size of in-
put data in each iteration [11]. Inspired by these advantages, there
are various studies attempting to introduce mini-batch strategy
to GCN framework. GraphSAGE [12] proposes an inductive learn-
ing architecture and utilizes a fixed number of neighbors for the
sampled node to aggregate feature information. Graph Attention
Network (GAT) [13] applies the attention mechanism to learn the
attentions between central node and its neighbors. FastGCN [9]
samples a fixed number of nodes for each graph layer based on the
node importance. LGCN [14] builds the sub-graphs for the training
nodes by adjacent information, which reduces the batch size for the
training process. Cluster-GCN [11] obtains a great performance in
large-scale inductive learning problems, sampling a block of nodes
from the dense graph through the clustering algorithms. hGANet
[15]selects k-most important neighboring nodes for the query, in-
troducing the hard graph attention and channel-wise attention to
overcome the limitation of consuming excessive computational
resources. Recently, GraphSAINT [16] utilizes the graph sampling
methods, constructing the mini-batches by sampling the training
graph to improves training efficiency.

Even though the aforementioned mini-batch based frameworks
enable enhancing GCN to some extent, the flexibility of these GCN-
based models are still restricted due to the essence of coupled train-
ing, repeatedly considering the aggregations between neighboring
nodes. In fact, the results realized through high-order recursive
neighborhood expansion are not cost-effective. On one hand, intu-
itively, the features of the high-order neighbors are not highly re-
lated to the targeted nodes, where the aggregation from high-order
neighboring nodes may introduce the redundant information. On
the other hand, the inflexibility caused by the recursive neighbor-
hood expansion makes the training process coupled, which leads to
high computational and memory overheads. Hence, it makes sense
to explore the uncoupled framework with good cost performance.

To overcome the defects of coupled frameworks, we present
Node2Grids, a cost-efficient uncoupled architecture for large-scale
graph learning. The framework of Node2Grids consists of two parts:
(1) mapping the coupled nodes (i.e. graph data) to independent grid-
like data (i.e. Euclidean structured data), and (2) employing a simple
three-layer neural network based on CNN to capture the charac-
ters from the grid-like data. And these two steps are extremely
simple but valid to improve the cost performance. Compared with
the previous coupled works based on GCNs, Node2Grids adopts
more cost-effective and simpler strategies to realize the graph data
decoupling, which are illustrated in Section 3 in detail. By the strat-
egy of mapping, the classification loss on a single node is able to
be resolved into the individual term on each sample, rather than
depending on a number of coupled nodes like GCNs. Additionally,
the downstream task enables applying mini-batch training method
to the mapped grid-like data. The batch size in the training nodes
can be set elastically and the data in the same batch can be com-
puted parallelly, which reduces the computational and memory
requirements. We summarize the contributions as follow:

• For the sake of efficient cost performance, Node2Grids sup-
ports a convenient graph decoupling framework to avoid the
problem of recursive neighborhood expansion. Moreover,
the architecture of Node2Grids is designed extremely simply
with lower time and memory overheads.

• In order to evaluate the efficiency in terms of time and mem-
ory cost, we compare the time and memory complexities of
Node2Grids with the leading GCN-based methods, which
theoretically proves that the uncoupled Node2Grids has com-
parably low overheads as the state-of-the-art GCN-based
models. Moreover, the superiority in cost performance of
Node2Grids is practically verified through comprehensive
experiments on both transductive and inductive datasets,
including the large-scale graphs.

2 RELATEDWORK
Our model is related to previous graph learning techniques includ-
ing Graph Convolutional Network, some recent developments in
large-scale inductive learning tasks and CNN-based frameworks.
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Figure 2: An example of the proposed mapping algorithm with 𝑘 = 8. The input graph has seven nodes with three features (i.e.
𝑓 = 3), and the brown node 3 is the given central node. To begin with, Node2Grids selects the first-order neighbors 𝑁1 = {0, 1, 2, 4}
and second-order neighbors 𝑁2 = {5, 6}. Then the 𝑁1 and 𝑁2 are ranked respectively according to the node degree. In grid-like
data, each feature of the nodes represents a channel. For each channel, the proposed algorithm fills the features of the nodes in
𝑁1 and 𝑁2 into the grids respectively to create the Euclidean structured data (pads the nodes from 𝑁2 after padding the nodes
from 𝑁1). Note that if 𝑘 > |𝑁1 | + |𝑁2 |, the default value of an unfilled grid is zero. In the last step, after creating the grid-like data
with the size of 8 × 1 × 3 , Node2Grids conducts information fusion (with 𝜃𝑏𝑖𝑎𝑠 = 0.5) between the central node and its neighbors,
i.e. the feature of the central nodes is introduced to update the grid-like data.

Graph Convolutional Network. The process of discrete con-
volution is essentially operations of weighted sum [17]. Based on
the spectral domain [18], GCN [1] introduces the convolutional
operations on topological graph and reaches state-of-the-art per-
formance on some datasets. Specifically, for a given graph, GCN
gains a node representation by aggregating its neighbors’ layer
by layer. At each layer, the operations can be described as linear
transformations and nonlinear activation functions. However, orig-
inal GCN is a full-batch based and transductive learning model,
where the fixed whole graph is utilized as input, causing a great
limitation in efficiency and memory usage for large-scale graph
learning. What’s more, the full-batch based GCN is inapplicable for
inductive learning tasks.

Large-scale graph and inductive learning. Hamiltion et al.
[12] propose the concept of inductive learning on the large graph,
where the nodes from the testing set are unavailable during the
training process. In order to process inductive learning problems,
GraphSAGE [12] trains the model through a fixed number of neigh-
bors for each given node, where the representations are aggregated
from the local neighborhood. At inference time, GraphSAGE em-
ploys the trained model to generate embedding for entirely invisible
testing nodes. While GraphSAGE still suffers from the high require-
ments of memory due to the problem of exponential neighborhood
growth.

CNN-based graph learning. Convolutional Neural Network
[19] is effective and efficient in analyzing Euclidean structured data.
In order to introduce CNN to graph learning tasks, it is crucial
to transform graph data to grid-like data. For utilizing CNN to
extraction, LGCN [14] selects a fixed number of neighboring nodes
by ranking the feature values to construct the grid-like data for
the given central nodes at each iteration. While this dynamic grid-
like data construction during each iteration introduces the extra
cost of computation. Even though LGCN leverages the strategy
of sub-graphs building and CNN to enhance the model, there is
still a drawback in flexibility due to the coupled pre-processing of
implementing GCN to aggregate the neighboring characters.

Instead of continual and coupled neighboring aggregation as
the GCN-based models (i.e., the coupled training frameworks), the
proposed Node2Grids adopts a simple but effective mapping ap-
proach to extract the characters of neighborhood (i.e., mapping
the coupled nodes to uncoupled grid data). Moreover, Node2Grids
applies the efficacious CNN-based network to extract the meaning-
ful information from independent grid-like data. These strategies
make the graph processing tasks cost-efficient and flexible, achiev-
ing great cost performances in both transductive and inductive
learning problems.

3 PROPOSED METHOD
In this section, we illustrate the framework of Node2Grids. The
goal of Node2Grids is to construct a flexible framework to tackle
the problems that conventional GCN-based models faced. The ar-
chitecture of Node2Grids is shown in Figure 1. We first introduce
the mapping strategy, and then describe the simple CNN-based
three-layer neural network as well as the modified loss function
we used for node classification tasks.

3.1 Grid-Like Data Generating
In order to apply efficient CNN model (i.e. an uncoupled training
method) to the coupled graph data, there are several challenges
caused by the gaps between graph data and grid-like data. The
graph is coupled with nodes and edges according to the topology,
with various numbers of the unordered neighborhood for each node.
While the grid-like data comprise a fixed number of grids organized
orderly and independently in space. Specifically, in generic graph,
the number of each node’s neighbors is not constant, yet CNN
requires the spatial neighborhood size remains the same. Besides,
instead of the ordered neighboring grids in grid-like data, neighbors
in graph cannot be sorted directly since there is no naturally recog-
nized rule for node ranking. In this part, we illustrate the details for
the mapping approach which transforms the graph data to uncou-
pled grid-like data. The algorithm of mapping can be categorized
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into three strategies, i.e. degree-based selection, neighborhood ex-
pansion and Central-Fusion. Notably, the mapping processing can
be conducted in parallel.

Degree based selection.We propose a degree-based method
for mapping which transforms coupled graph data to independent
Euclidean grids. This degree-based strategy has the following bene-
fits: 1) The node degree is a common character in graph data which
makes the proposed model adaptive to various kinds of graph data.
2) As an inherent property of graph, node degree reflects the influ-
ential ability [20] and the topology of original graph [21] naturally,
where a node with higher degree tends to have a greater level of
influence. 3) The degrees of nodes are easy to obtain, which saves
time for constructing the grids.

Neighborhood expansion. Graphs are generally sparse in the
natural world. We hold an opinion that the information included
in the first-order neighbors is limited for sparse networks, which
is not sufficient for expressing the character of a given node. In
addition, the second-order neighbors play important roles in social
activities [22]. Therefore, we introduce the second-order nodes to
extend the neighborhood for the given central node. To be spe-
cific, second-order neighbors are the nodes which can be reached
from the given node by two hops, not included in the first-order
neighbors and central node. In this case, we consider the secondary
transmission of node information to enrich the expression, which
achieves obtaining the more expressive Euclidean grids. Notably,
considering the cost performance, Node2Grids don’t bring in the
higher order neighbors which are less related to the central node
than the first-order and second-order neighboring nodes, and the
search for high-order nodes will cause extra overheads.

Central-Fusion. The proposed model constructs the grid-like
data by leveraging the feature of the central node and its neighbor-
hood. Compared with the information carried by adjacent nodes,
it is more important to consider the expression of the given the
central node. There should be two keys for fully representing the
given node. First of all, the central node feature should have more
proportion than the neighboring nodes’ in the mapped Euclidean
structured data. Furthermore, the expression of the central node
needs to be contained on the global grid-like data rather than in
local locations. Therefore, we introduce the approach of Central-
Fusion to disperse the central node feature into the Euclidean grid
globally. And we will demonstrate the effectiveness of Central-
Fusion by the exploratory experiments in Section 4.5 and Section
4.6.

The proposed model builds a channel of grids for each feature.
Supposing the given central node with 𝑓 features utilizes 𝑘 neigh-
bors to construct the Euclidean structured grid, we set the dimen-
sion of the grid-like data to 𝑘 × 1× 𝑓 , where 𝑓 is the number of grid
channels (i.e. node features) and 𝑘 × 1 is the size of grid-like data
(i.e. grid size) in each channel. The process of mapping is illustrated
in Figure 2. For a given central node, we search for the first-order
neighbors 𝑁1 and second-order neighbors 𝑁2 for padding, selecting
the top 𝑘 neighbors from the searched nodes according to their
degree value. Then the proposed Node2Grids pads the grid with
features of the selected nodes. Note that searching for second-order
neighbors increases the time complexity, Node2Grids defines that
the nodes in 𝑁1 have the higher priority than 𝑁2 when padding
the grids (i.e. The first-order and second-order nodes are ranking

through node degree separately, and after the first-order nodes are
placed on the grids, we put the second-order nodes if the number
of first-order neighbors is less than 𝑘), which enables controlling
whether to bring in second-order neighbors by adjusting the setup
of 𝑘 according to the connectivity about network. Namely, if the
graph is not sparse, the value of 𝑘 can be set in a proper range
to only employ the first-order neighbors, which are sufficient to
significantly express the original graph. Notably, if 𝑘 > |𝑁1 | + |𝑁2 |,
the default value of an unfilled grid is set to zero. We also conduct
the exploration experiments about grid size (i.e. k) in Section 4.5.

At the final step of mapping, the proposed Node2Grids conducts
Central-Fusion, i.e. information fusion between the given node and
the its neighbors. For the sake of expressing character of the given
node around the grid-like data, we fuse current grids’ features with
the corresponding given node’s. Concretely,

𝐺 = 𝜃𝑏𝑖𝑎𝑠 ∗𝐺𝑐 + (1 − 𝜃𝑏𝑖𝑎𝑠 ) ∗𝐺𝑛, (1)

where 𝐺𝑛 ∈ R𝑘×1×𝑓 is the grid-like data built by only selected
neighbors. We obtain𝐺𝑐 ∈ R𝑘×1×𝑓 extended from the central node,
in which the grids of each channel are filled with the correspond-
ing features of the central node. And 𝜃𝑏𝑖𝑎𝑠 is the bias coefficient
of information fusion, which enable modifying the proportion of
central node character. Of course, Node2grids adopts these easy
principles to construct the grid-like data for the good efficiency, so
the expression of primitive graph may not as well as the complex
models with various components.

3.2 Grid-Like Data Processing
Convolutional Neural Network (CNN) is an efficient and effective
approach for the Euclidean structured data processing. Inspired by
these advantages, Node2Grids applies CNN to conduct downstream
tasks rather than GCN. At the training phase, we apply the 1-D
convolutional kernels to extract the significant information from
the uncoupled grid-like data. Specifically, Node2Grids employs
a simple and flexible three-layer neural network, consisting of a
convolutional layer and two fully-connected layers, to conduct
the node classification tasks. Moreover, we utilize the attention
mechanism to learn the weights of each grid in grid-like data around
all channels.

Grid-level attention mechanism. For the general Euclidean
structured data such as images, "pixels" in different grids play dif-
ferent roles in expressing the "image" [23]. For example, the colored
pixels of an image are generally more essential than the blank ones.
In other words, there exist different biased weights for "pixels" in dif-
ferent space. Similarly, different neighbors have different influences
on the central node [13]. Thus, it’s significant to learn the grid-level
attention (i.e. attentions on the neighbors with different level in-
fluences) for the mapped grid-like data in Node2Grids. To this end,
we propose the attention mechanism which utilizes learnable at-
tention filters to implicitly specify the weights within the grid-like
data. For the sake of better specifying the weights, Node2Grids con-
ducts attention mechanism on the extracted grid-like data of CNN,
rather than executing it at the beginning to change the original
mapped data. Notably, all channels of the grid-like data share the
same filter parameters due to the factor that Node2Grids focuses on
attentions about neighbors rather than the features (the channels),
which reduces the parameters greatly. Instead of prior frameworks’

Full Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2284



Table 1: Summary of time and memory complexities against the leading GCN-based models, where the summary of GCN-based
models are from Chiang’s work [11]. In this table, 𝐿 is the number of GCN layers, 𝐴 is the adjacency matrix of full graph, | |𝐴| |0
is the number of nonzeros in the adjacency matrix, 𝑁 and 𝑁𝑡 are the number of nodes from the dataset and the training set
respectively. 𝐹 is the number of features and the number of output features is fixed in all layers for simplicity. For SGD-based
methods, 𝑏 is the batch size and 𝑟 is the number of sampled nodes for the predicted node. For Node2Grids, ℎ is the number of
attention filters and 𝑘 is the size of grid-like data. As for memory complexity, we consider the parameters and the intermediate
variables of the models for simplicity.

GCN [1] GraphSAGE-GCN [12] Cluster-GCN [11] Node2Grids

Time complexity 𝑂 (𝐿 | |𝐴| |0𝐹 + 𝐿𝑁𝐹 2) 𝑂 (𝑟𝐿𝑁𝐹 2) 𝑂 (𝐿 | |𝐴| |0𝐹 + 𝐿𝑁𝐹 2) 𝑂 (𝑘ℎ𝑁𝑡 𝐹 + 𝑘𝑁𝑡 𝐹
2)

Memory complexity 𝑂 (𝐿𝑁𝐹 + 𝐿𝐹 2) 𝑂 (𝑏𝑟𝐿𝐹 + 𝐿𝐹 2) 𝑂 (𝑏𝐿𝐹 + 𝐿𝐹 2) 𝑂 (𝑏𝑘𝐹 + 𝑘𝐹 2 + 𝑘ℎ)

Table 2: Summary of the datasets used in the experiments.

Dataset #Nodes #Features #Classes #Training Nodes #Validation Nodes #Test Nodes Task

Cora 2,708 1,433 7 140 500 1,000 Transductive

Citeseer 3,327 3,703 6 120 500 1,000 Transductive

Pubmed 19,717 500 3 60 500 1,000 Transductive

PPI 56,944 50 121 44,906 6,514 5,524 Inductive

Amazon2M 2,449,029 100 47 1,196,615 39,323 1,213,091 Inductive

numerous attention operations on all neighboring nodes, a handy
attention mechanism is implemented by Hadamard product on
the structured grid-like data for Node2Grids. Moreover, we will
prove the effectiveness of the grid-level attention mechanism by
the experiments in Section 4.6.

CNN-based network architecture. After the process of map-
ping, the uncoupled Euclidean structured representations are ob-
tained for nodes, where the general convolutional kernels can be
applied to extract the advanced information. Compared with previ-
ous works applying GCN to aggregate the neighboring features, a
simple CNN-based three-layer network architecture is employed
to process the grid-like data, which enables speeding up the train-
ing process and saving memory to enhance the scalability. To be
specific, we apply a convolutional layer and two fully-connected
layer in our architecture. Notably, the second fully-connected lay-
ers is used as the classifier. And the layer-wise propagation rule of
Node2Grids is formulated as:

𝑥𝑙 = Conv(𝐺),

𝑥 ′
𝑙
= 𝑥𝑙 + ( 1

ℎ

ℎ∑︁
𝑡=1

𝐹𝑎𝑡𝑡 ) ◦ 𝑥𝑙 ,

𝑥𝑙 = 𝑔(𝑥 ′
𝑙
),

(2)

where 𝐺 ∈ R𝑘×1×𝑓 is the mapped Euclidean structured data, in
which 𝑘×1 represents the grid size in each channel and 𝑓 represents
the number of channels. In this case,𝐺 contains the fusion character
between the central node and its neighbors. Conv(·) is a regular
1-D CNN that extracts the significant information from grid-like
data, in which the kernel size is 𝑛𝑘𝑒𝑟 and the stride is set to 1,
without any padding strategy. Besides, Node2Grids employs the

Hadamard product ◦ to realize attention mechanism. The 𝐹𝑎𝑡𝑡 ∈
R(𝑘−𝑛𝑘𝑒𝑟+1)×1×𝑓 is a single attention filter, where the number of
learnable parameters is (𝑘−𝑛𝑘𝑒𝑟 +1)×1 (i.e. all channels of grid-like
data share the same filters’ parameters). Note that the multi-head
attention mechanism is applied, and the ℎ refers to the number of
attention heads (i.e. the number of attention filters). In addition,
𝑔(·) is the function of fully-connected layers and 𝑥𝑙 is the output
of the three-layer network.

3.3 Modified Loss Function
The learnable parameters in attention filters have a great impact on
the output. In order to enhance the ability to resist disturbance, the
greater coefficient is set for 𝑙2 regularization in attention filters. For
making the loss function adapted to attention mechanism, we mod-
ify it by multi-value 𝑙2-regularization. The modified loss function
of Node2Grids is defined as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿(𝑦,𝑦) + 𝜆
∑︁

𝑤2 + 𝜆𝑎𝑡𝑡

∑︁
𝑤2
𝑎𝑡𝑡 , (3)

where 𝑦 and 𝑦 are predicted labels and real labels of nodes respec-
tively,𝑤 and𝑤𝑎𝑡𝑡 are the learnable parameters in neural networks
and attention filters respectively. In addition, 𝜆 and 𝜆𝑎𝑡𝑡 are the
𝑙2-regularization coefficients for the neural networks and atten-
tion filters respectively. 𝐿(𝑦,𝑦) + 𝜆

∑
𝑤2 is the general loss func-

tion with 𝑙2-regularization. And 𝜆𝑎𝑡𝑡
∑
𝑤2
𝑎𝑡𝑡 is the formula of 𝑙2-

regularization for attention filters to prevent over-fitting. Notably,
𝜆𝑎𝑡𝑡 is set to be larger than 𝜆, which allows a stronger constraints
to the parameters updating for attention filters.
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3.4 The Analysis of Time and Memory
Complexities

Time and space complexities compared against the leading GCN-
based models are summarized in Table 1. For Node2Grids, the
time complexity of convolutional and the fully-connected layers
is 𝑂 (𝑘𝐹 2). And the attention operations have the time complexity
with 𝑂 (𝑘ℎ𝐹 ). As for memory complexity, the parameter overhead
of convolutional and the fully-connected layers is 𝑂 (𝑘𝐹 2). The at-
tention filters have the 𝑂 (𝑘ℎ) parameters. And Node2Grids should
spend 𝑂 (𝑏𝑘𝐹 ) memory cost for the intermediate variables in each
batch. Hence, for each epoch, the overall time and memory com-
plexity are𝑂 (𝑘ℎ𝑁𝑡 𝐹 + 𝑘𝑁𝑡 𝐹

2) and𝑂 (𝑏𝑘𝐹 + 𝑘𝐹 2 + 𝑘ℎ) respectively.
Notably, from Table 1, the 𝑁𝑡 of 𝑂 (𝑘ℎ𝑁𝑡 𝐹 + 𝑘𝑁𝑡 𝐹

2) refers to the
number of training nodes instead of all the nodes from the whole
dataset like 𝑁 and 𝐴 as GCN-based frameworks. In brief, the cost
of Node2Grids only relates to the size of the current training nodes
with their 𝑘 neighbors rather than the recursive high-order neigh-
borhood, which reduces the time and memory overheads.

4 EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency of the
proposed Node2Grids in two classes of node classification tasks,
i.e. transductive and inductive learning tasks. The statistics of the
datasets are summarized in Table 2. For transductive learning prob-
lems, we follow the recent studies conducting the experiments
over the three benchmark datasets, i.e. Cora, Citeseer and Pubmed
datasets [24]. For the inductive learning tasks, we verify the pro-
posed Node2Grids on Protein-protein interaction (PPI) [25] and
Amazon2M [11].

4.1 Baseline Methods
DeepWalk [29] is a representative network embedding method,
using the random walk to sample nodes and obtains the embedding
for the given node by these sampled nodes. Chebyshev [30] and
GCN [1] is the leading approaches for graph learning in spectral
domain. Based on GCN, hGANet [15] is the state-of-the-art model
by introducing a modified attention mechanism. GraphSAGE [12],
GAT [13] and LGCN [14] is the mini-batch based strategies, which
can conduct the inductive learning tasks. Notably, GraphSAGE-
GCN [12] is a framework extending GCN to inductive learning
tasks. And GraphSAGE-LSTM [12] is the GraphSAGE-based model
employing LSTM as aggregators. ClusterGCN [11] is the state-of-
the-art GCN-based framework for inductive large graph learning.

4.2 Experimental Setups
In this section, we describe the experimental setups in the proposed
model in both transductive and inductive learning tasks. And the
experiments are conducted on the configuration of GTX 1080 Ti
graphics card.

Transductive learning task. In stead of the full-batch based
strategy, the proposed Node2Grids only leverages partial nodes
from the training set with batch size elastically set. For Cora, Cite-
seer and Pubmed datasets, the batch sizes are 15, 30 and 8 respec-
tively. We apply RMSprop optimizer [26] to train the model, with
the learning rate as 0.008 and weight decay as 0.0015. The dropout
strategy [27] is applied in the first fully-connected layer, with the

rate of 0.6. Note that the attention mechanism is introduced, there
are 50 attention heads with the extra coefficients for 𝑙2 regular-
ization in attention filters set to 0.0008, 0.025 and 0.07 for Cora,
Citeseer and Pubmed datasets respectively.

Inductive learning task. We conduct the inductive learning
experiments on protein-protein interaction (PPI) dataset and Ama-
zon2M. The batch size is set to 2,000 and 10,000 in each iteration
for PPI and Amazon2M datasets. The Nadam optimizer [28] is em-
ployed, in which the learning rate is set to 0.001 and the value of
coefficient 𝜆 is set to 5 × 10−7 for 𝑙2 regularization. In addition, The
dropout [27] rate is set to 0.5 in both the convolutional layer and
the first fully-connected layer. And there are also 50 attention heads
applied with 𝜆𝑎𝑡𝑡 set to 1 × 10−6 for 𝑙2 regularization in attention
filters.

4.3 Tranductive Learning Tasks
4.3.1 Comparisons of Effectiveness. In transductive learning
problem, The results are reported by mean classification accuracy
with the standard deviation over 100 runs as the previous works in
transductive tasks [1, 13–15] for ensuring consistency. From the re-
sults summarized in Table 3, the proposed Node2Grids outperforms
the current leading GCN-based models, especially achieving a great
improvement over the original GCN by margins of 2.2%, 2.9% and
0.8% on the datasets of Cora, Citeseer and Pubmed respectively.

4.3.2 Comparisons of Efficiency. On transductive learning tasks,
we also verify the high efficiency of the proposed model by compar-
ison with previous GCN-based approaches. In addition to the three
benchmark datasets (i.e., Cora, Citeseer and Pubmed datasets), we
also conduct experiments on the large-scale simulation graphs. No-
tably, there are two factors having impacts on the time cost, which
are (1) time spending for each epoch, (2) the convergence speed. To
this end, we report the average time by the training process from
startup to obtain a valid testing model over 30 runs. For the sake of
fairness, we take into account the time of generating the grid-like
data in Node2Grids, and these three models do calculations on both
training set and validation set in each epoch.

We implement the compared models by running the released
codes from their GitHub pages, and use the default configurations
for these three datasets. The results of efficiency comparison on real-
world networks are summarized in Table 4, where the LGCN𝑠𝑢𝑏
is LGCN model with the sub-graph generating algorithm to speed
up the training process. From the results shown in Table 4, GCN
achieves better efficiency on Cora and Citeseer datasets due to
the parallel computations on small graphs. However, for Pubmed
dataset, it’s harder to process a large number of nodes for GCN, with
efficiency greatly reduced. As for LGCN𝑠𝑢𝑏, , it spends more time
because of the coupled calculation on the relatively large sub-graph
for validation set. The performance demonstrates the significant
time efficiency and effectiveness of the proposed Node2Grids model,
especially in Pubmed which is a large graph with 19,717 nodes.

In order to further evaluate the scalability of Node2Grids, we
conduct experiments on large-scale simulation networks. We gen-
erate nodes with labels based on the planted-l-partition model [31],
where the feature distributions are assigned on the basis of Madelon
benchmark networks [32]. Specially, we refer to Pubmed dataset
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Table 3: The Summary of results for transductive learning experiments in terms of average node classification accuracy, on the
dataset of Cora, Citeseer and Pubmed.

Method Cora Citeseer Pubmed

DeepWalk [29] 67.2% 43.2% 65.3%
Chebyshev [30] 75.7% 64.7% 77.2%
GCN [1] 81.5% 70.3% 79.0%
GAT [13] 83.0% 72.5% 79.0%
LGCN [14] 83.3% 73.0% 79.5%
hGANet [15] 83.5% 72.7% 79.2%

Node2Grids (Ours) 83.7 ± 0.2% 73.2 ± 0.4% 79.8 ± 0.5%

Table 4: Results of comparison in time cost and node classification accuracy with GCN and LGCN (using the sub-graph strategy
for LGCN, i.e LGCN𝑠𝑢𝑏), on the datasets of Cora, Citeseer and Pubmed. The time cost is averaged from the start to the end of the
training over 30 runs. Notably, the time cost consists of both mapping and training process in the proposed Node2Grids model.

Cora Citeseer Pubmed

GCN
Time Accuracy Time Accuracy Time Accuracy
2.8s 81.5% 4.6s 70.3% 20.9s 79.0%

LGCN𝑠𝑢𝑏
Time Accuracy Time Accuracy Time Accuracy
53.2s 83.3% 27.6s 73.0% 57.6s 79.5%

Node2Grids (Ours)
Time Accuracy Time Accuracy Time Accuracy
5.3s 83.7 ± 0.2% 5.9s 73.2 ± 0.4% 7.3s 79.8 ± 0.5%

Figure 3: The results of experiments on large simulation networks, where N represents the size of the dataset. The average
node classification accuracy and time cost over 30 runs are reported in these experiments. In addition, the memory usages are
reported on 0.1M and 1M graphs, with 500 and 5000 training batch size on these two graphs respectively.

to set average node degree and class number to 6 and 3 respec-
tively. Additionally, each node belongs to a single class with 500
features. Two magnitudes of networks (with size of 0.1M and 1M)
are employed during the experiments. And the compared model of
GCN adopts two-layer convolutional networks in these simulation
networks experiments. From the results reported in Figure 3, it can
be observed that Node2Grids outperforms in efficiency with nearly
1/15 and 1/100 of the time cost in GCN on these two graphs respec-
tively, while having greatly comparable performance in prediction
accuracy. The memory costs are also reported in Figure 3, which

takes into account the model parameters and all hidden represen-
tations for a batch. Compared with GCN, the memory usages of
Node2Grids are only 1/14 of GCN on 1M network. Furthermore,
both time cost and memory requirement for Node2Grids do not
increase numerously when increasing the size of dataset, due to
the strong parallel ability and few intermediate variables for the
flexible training phase. Obviously, the gaps of memory usage as
well as the time cost between these two models will further increase
as the dataset expands. In conclusion, Node2Grids is a significantly
low-overhead and highly parallel model, which demonstrates a
superiority in processing large-scale transductive graph.
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Table 5: The summary of results in terms of micro-averaged
F1 score for inductive learning tasks, on the dataset of PPI.

Method PPI

GraphSAGE-GCN [12] 0.500
GraphSAGE-LSTM [12] 0.612
LGCN [14] 0.772
GAT [13] 0.973

Node2Grids (Ours) 0.977 ± 0.002

Table 6: The summary of results in terms of average
micro-averaged F1 score, time cost and memory usage for
comparisons between GraphSAGE-GCN, Cluster-GCN and
Node2Grids, on the million-scale inductive dataset of Ama-
zon2M.

Method Time Memory F1 score

GraphSAGE-GCN 527.2s 6,251MB 0.880±0.005
Cluster-GCN 1521.2s 5,107MB 0.884±0.003

Node2Grids (Ours) 567.5s 3,221MB 0.885±0.003

4.4 Inductive Learning Tasks
In inductive learning problems, we follow the study of [12] to report
the micro-averaged F1 score (with standard deviation) of the nodes
in unseen testing set over 10 runs. In addition to explore on the
median size datasets, we also verify the scalability of the proposed
model on the million-scale graph.

4.4.1 Median size dataset. We conduct the median size trial
on PPI dataset. From Table 5, it can be observed that the proposed
Node2Grids performs better than previous methods, especially gain-
ing a great progress over the representative GCN-based mini-batch
approaches. (i.e., GraphSAGE-GCN and LGCN, by margins of 0.477
and 0.205 respectively).

4.4.2 Million-scale dataset. In order to further evaluate the scal-
ability of the proposed Node2Grids, we also conduct experiments
on the Amazon2M network, which is the largest public dataset with
more than two million nodes. The data format and the codes of
compared GCN-based models provided by OGB Team 2 are used. To
explore the models’ scalability on large training data, we repartition
the dataset to allocate more than one million nodes (the original
partition with only 0.2M training size) to the training set, i.e., allo-
cate the first one million nodes in the index from the test set to the
training set, and evaluate on the rest nodes from the original test
set.

On this dataset, Node2Grids is compared with GraphSAGE-GCN
and Cluster-GCN in terms of effectiveness, time and memory over-
heads, where the time and memory costs are calculated as Section
4.3. The number of convolutional layers for these two GCN-based
models is set to three. For the sake of fairness, the batch size of these

2https://ogb.stanford.edu/docs/nodeprop/

three models is set to 1/120 of the training set and the preprocess-
ing time is calculated. From Table 6, we can find that Node2Grids
enjoys the better effectiveness and memory cost than the leading
GCN-based models, where the memory cost is almost 1/2 and 3/5 of
GraphSAGE-GCN and Cluster-GCN respectively, with the compa-
rable F1 score and time efficiency. Even though GraphSAGE-GCN
spends slightly less time than Node2Grids because of the few pre-
processing, this coupled framework suffers from the exponential
memory growth due to the recursive neighborhood expansion, re-
quiring much more memory for training. In brief, the superiority
of cost performance for Node2Grids is practically verified further
through these million-scale experiments.

4.5 The Study of Central-Fusion and Grid Size
In this section, we explore the influence of hyper-parameter 𝑘 and
𝜃𝑏𝑖𝑎𝑠 on the datasets of Cora, Citeseer and Pubmed respectively. The
Node2Grids utilizes central node fusion (Central-Fusion) to make
sure that the character of the given central node can be expressed
over the grid-like data globally, in which the 𝜃𝑏𝑖𝑎𝑠 represents the
level of central node fusion. (i.e. the greater 𝜃𝑏𝑖𝑎𝑠 , the more parti-
tion of central node character in the Euclidean grid). Besides, We
select 𝑘 neighbors based on the value of degree and construct 𝑘-D
grid-like data in each channel for the given node. Intuitively, the
hyper-parameter 𝑘 represents the level of introducing neighbors’
information. We report node classification accuracy to evaluate the
effect of 𝑘 and 𝜃𝑏𝑖𝑎𝑠 . The results are summarized in Figure 4.

For the effect of Central-Fusion, it can be obviously discovered
that this strategy achieves positive influence by comparing the
situation of 𝜃𝑏𝑖𝑎𝑠 = 0 to a significant value of 𝜃𝑏𝑖𝑎𝑠 . From Figure 4,
the model performs best on these three datasets when 𝜃𝑏𝑖𝑎𝑠 = 0.4.
Particularly, Node2Grids performs worse when the 𝜃𝑏𝑖𝑎𝑠 is greater
or less than the applicable value, which indicates that it exists
a reasonable proportion for central node fusion. In other words,
deficiency or redundant of the central node character will result in
the deviation of expressing the raw graph. As for inductive learning
tasks on PPI and Amazon2M datasets, there also exist an applicable
setup for 𝜃𝑏𝑖𝑎𝑠 with values of 0.55 and 0.5 respectively.

On Cora, Citeseer and Pubmed datasets, these three networks are
sparsewith the average node degrees of 4, 5 and 6 respectively. It can
be seen from the Figure 4 that𝑘 is set appropriatelywith values of 16,
12 and 12 for Cora, Citeseer and Pubmed respectively. Notably, these
best setups for 𝑘 bring in proper second-neighboring character to
enrich the grid-like data. At aword, the proposedNode2Gridsmodel
requires a reasonable grid size (i.e. 𝑘) to build the grid-like data.
When 𝑘 is too small, it’s difficult for the inadequate neighbors to
reflect the origin graph.While 𝑘 is too large, there are two aspects of
decreasing the performance for Node2Grids: on one hand, the large
𝑘 means selecting various of second-order neighbors for mapping,
resulting in introducing the redundant second-order information
which causes a negative impact on expression of the closer first-
order neighbors; On the other hand, the model may pads too much
zero in the grid-like data, which compromises the performance of
subsequent extraction task. Moreover, we also conduct experiments
to explore the setting of𝑘 for PPI and Amazon2M datasets. Note that
the best setup for k is 16 on both PPI and Amazon2M graphs which
is smaller than their average node degrees (with the values of 31
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Figure 4: The results of exploring the influence of 𝜃𝑏𝑖𝑎𝑠 and 𝑘 on the datasets of Cora, Citeseer and Pubmed respectively. The
node classification accuracy is reported in these experiments. The x-coordinate and y-coordinate represent 𝑘 and mean accuracy
respectively. And the different colored lines represent the different occasions for 𝜃𝑏𝑖𝑎𝑠 .

Table 7: The results of ablation experiments. The mean node classification accuracy over 30 runs are reported on this table. The√
means taking the corresponding strategy, while the × is the opposite.

#Second-Order Neighbor #Central-Fusion #Attention Mechanism Cora Citeseer Pubmed

× × × 67.6% 63.8% 40.7%√ × × 78.9% 69.5% 69.0%
× √ × 77.7% 64.1% 45.7%
× × √

73.2% 69.1% 66.1%√ √ × 83.1% 72.4% 76.3%√ × √
80.9% 70.3% 78.1%

× √ √
78.2% 70.2% 76.0%√ √ √
83.7% 73.2% 79.8%

and 25 respectively), indicating that the Euclidean grid can be built
without introducing the second-order neighbors if the network is
not sparse.

4.6 Ablation Study
For further exploring the effectiveness of the proposed strategies,
we conduct the ablation studies to justify the contribution of each
component of the proposed Node2Grids. Thus, we ablate the strate-
gies of introducing second-order neighbors, Central-Fusion and
attention mechanism. Table 7 shows the quantitative comparisons
of our ablated variants, where the ablation experiments are con-
ducted on the datasets of Cora, Citeseer and Pubmed.

As we can see, each strategy boots the framework independently.
Compared with the completely ablated model, the accuracy is im-
proved by margins of 11.3%, 5.7% and 28.3% on the Cora, Citeseer
and Pubmed datasets respectively by individually applying the strat-
egy of introducing the second-order neighbors, which indicates the
importance of considering the second-order node information in
the sparse graphs. Meanwhile, the enhancement brought by sep-
arately implementing Central-Fusion, which is 10.1%, 0.3%, 5.0%
respectively, implies the effectiveness of fusing the central node
feature with the neighborhood’s as Formulation (1). Likewise, the
lift through applying the attention mechanism also suggests that
assigning weights to the grids is warranted.

The experiments also obtain more positive impacts while using
multiple strategies. Particularly, the intact model gains significant
progress over the completely ablated framework by margins of
16.1%, 9.4% and 39.1% on the dataset of Cora, Citeseer and Pubmed.

This demonstrates the effectiveness of the three strategies to the
proposed architecture.

5 CONCLUSION
This paper presents a cost-efficient uncoupled training framework
to analyze the coupled graph data, which can be applied to process
the large-scale graph especially. We verify the superiority of effec-
tiveness and efficiency of this simple uncoupled training framework
through extensive experiments on both transductive and inductive
learning tasks. Moreover, we also verify the effectiveness of the
proposed strategies applied in Node2Grids during the experiments.
Though this uncoupled framework in our work is designed simply,
Node2Grids still shows comparable significant cost performance
against the state-of-the-art GCN-based models. In the future, it is
an interesting exploration to further design the varied mapping
approaches with the corresponding neural network structures in
this uncoupled training direction.
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